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1 Introduction

In the end of our Statistical Inference Course we scratched the surface of Bayesian Statistics. I’ll now
proceed to apply its core principles to obtain valid models to create an absolute scale for a certain player’s
skill, applied to the domain of chess1, using as basis the work done by Ken Regan, et al. [1].

All auxiliary code was done in Python and was sent as attachment.

2 Motivation

Most skill quantification systems rely heavily on describing a player by a number determining their
strength ≡ rating. This rating is modelled so that the expected outcome of a game between players X and Y
depends strictly on their ratings2 - which is able to successfully create a relative strength scale to classify
the players. At first glance this looks to be satisfactory enough, as we’re able to, for example:

• Have a good basis for matchmaking players creating, in principle, fair matches;

• Establish a clear player ranking;

However, as stated, this is still all relative! If we simply shifted all ratings by a constant c we wouldn’t
lose any information - a rating by itself has no meaning, and this has certain disadvantages, such as:

• Geographical Rating Stagnation: For example, strong players in less developed countries will have
their rating stagnated just because they can’t play better opponents.

• Quantifying Player’s Strengths: Evaluating whether a player is better in the ”opening”, ”middle” or
”end” phases of the game;

1Without loss of all generality, as with some adaptions this can be applied to a some other sports/activities.
2Usually these systems are backed up by the Bradley-Terry model for paired comparisons [2].
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• Cheater Detection: Detecting whether a player is playing suspiciously well, and perhaps cheating 3;

• Timeless Comparison: Establishing more accurate comparison between players of different eras.

Therefore, if we’re able to obtain a rating model rooted upon an absolute scale, we could in principle
address these and a lot of more problems!

3 Theoretical Basis

For such an absolute scale, as stated before, I’ll explore a way to construct it supported by the Bayesian
Inference approach in [1]. Let’s start by defining our problem more concretely: to have an absolute scale,
we’ll be aided with a computer which I’ll define as a ”perfect player”. If we then create a parametric
fallible model, we can create our absolute strength scale by comparing it to our perfect entity.

Let’s now formally define our tools. Our ”see-all” program is labeled as a reference chess engine E -
it’s armed with an analysis function fE : p → {(mi, vi)} - that is, we can evaluate a position p and obtain a
value vi for every legal move mi in p.

Now that we have a reasonable approximation for the perfect player, we can use it to model the human
players (fallible) model: we create a stochastic chess engine E(c) 4- while E always plays to perfection,
E(c) can play any of the available mi moves in position p, each with a probability defined by a likelihood
L
[
E(c), (p,mi)

]
. E(c) must satisfy some properties [4]:

• E(c = 0) =⇒ L = 1, after normalization we see that this is equivalent to a random-moving player!

• E(c → ∞), in a similar argument, leads to the perfect E player;

• c > 0 =⇒ better moves are more likely than worse moves;

L is defined in the support paper [1] such that:

L(E(c) plays mi in p) = (vmax − vi +K)−c

Where vmax ≡ the maximum value of all the possible moves, vi ≡ the chosen move’s value, c is our
fallibility parameter and K. To obtain a valid PDF we simply normalise it:

P
[
E(c), (p,mi)

]
=

L[E(c), (p,mi)]∑
mj
L[E(c), (p,mj)

To make sense of this L let’s fix vmax and plot the different c-likelihood curves in function of vi:
3Quite the buzz recently - https://www.nytimes.com/2023/12/25/crosswords/chess-hikaru-vladmir-kramnik-cheating.html
4c ≡ competence, first introduced by [3]

2



Figure 1: L(vi) for different c, vmax = 3

This seems valid! As we can see, c = 0 =⇒ we have a random player, c → ∞ =⇒ we tend to a
dirac-delta located on vmax, and we have a transitory middle ground ∝ x−c as ↑c.

Nevertheless, in this work I’ll explore a different likelihood function to explore a different transition:

Figure 2: Gaussian L(vi) for different c, vmax = 3

The reasoning used was modelling the above - a Gaussian-likelihood - so that we still keep the afore-
mentioned properties. We can accomplish this by:

• Restricting c ∈ [0.5, 1] 5

5Hence defining a perfect player with c = 1 and a random player with c = 0.5.

3



• We then obtain the above transition if µ(c) = vmax · c and σ(c) = 1
c−0.5 − 2

Which leaves us with Gaussian-likelihoods that ”shrink and slide”6 as we increase c-values7, something
that should be interesting to investigate.

4 Inference of the c-distribution

Defining data as the event e = (m, p), by simple application iteration of Bayes Theorem [5] we can
perform the model’s inference:

P
[
E(c)|ei

]
=

P
[
E(c)|ei−1

]
·P

[
ei|E(c)

]∑
cP

[
E(c)|ei−1

]
·P

[
ei|E(c)

]
Essentially calculating the posterior distribution and using it as the prior when we’re presented with

more data, to fit a better model.
I’ll use the ”know-nothing” initial uniform prior distribution - armed with all this, we’re able to

compute our desired c-distributions.

5 Results

Now that the methodology has been addressed, let’s try to compute these c-distributions to define our
absolute rating scale for certain players, (dataset as attachment) and use this to 8:

• A) Establish an absolute comparison between players of different skills;

• B) Detect suspiciously over-performing players - cheaters!

• C) Compare the world champions of completely different eras;

5.1 A - Skill Rating Comparison

Now that we have our new scale, the first thing that pops to mind is to establish a rating comparison
between players of different skill levels, by comparing their c-distributions. First off comparing it with the
traditional Elo Rating, let’s evaluate a benchmark for elite level players (rated > 2700) and compare it
with a benchmark beginner-intermediate level of players around 1000 rating:

6Credit to my colleague Francisco Ferreira for an interesting discussion on this topic.
7As it should, this L also converges to a dirac-delta located in vmax.
8There are endless possibilities here, but I chose these for illustration purposes.

4



Figure 3: Beginners vs. Elite Players’ c-distributions

Figure 4: µ and σ for both groups

We see two clearly different distributions; the latter has slightly converged better, but either way this
provides us with a reasonable metric for what are consistently humanly attainable performances, in this
scale.

5.2 B - Cheating Detection

For this part, generating c-distribution for a certain player gives us the necessary information about him
to detect over-performances: if we have a collection of games where the player is suspected of using external
assistance, we can simply create a c-distribution for said games and perform a test such as Kolmogorov-
Smirnov with a significance α = 2.857 · 10−7 (corresponding to at least 5σ 9).

For the sake of example, I’ll be the test subject here 10:
9To confirm cheating we have to be quite certain!

10I cheated by using stronger computer assistance... against computer opponents.
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Figure 5: Me vs. Cheater Me c-distributions

Figure 6: µ and σ for both distributions

Figure 7: p-value obtained with KS test

In this case my cheating was obvious, and clearly detected here. Nowadays the problem isn’t detecting
this, rather detecting smart cheating.

A difference between an elite player and a world champion of a certain activity is in the details - if an
elite player was able to cheat ”once” per game, getting information for the best move in the most complex
and critical position of the game, this could be what could catapult him to the top, and this smart cheating
surely wouldn’t be detected by this approach and will be addressed more carefully in a future, more careful
look into the topic (implementing an additional parameter h that would characterise how easy it is for a
human to find such a move would be a start).
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5.3 C - World Champion Comparison

At last, we’ll use this metric to compare the overall performance of world champions from two different
eras.

Comparing arguably the current world’s strongest player Magnus Carlsen and 1920’s world champion
José Raul Capablanca, we obtain the following c-distributions:

Figure 8: c-distributions for Magnus and Capablanca

Figure 9: µ and σ for both distributions

We see a statistically significant difference 11 between the means of both players, as expected: overall
chess study and computers significantly increased the level of play since 100 years ago.

11I performed a t-test between two generated samples from both distributions, p-value ≈ 0.
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6 Conclusion

The proposed absolute rating scale was sucessfully implemented, following the structure of the support
paper, albeit using a different likelihood function. This scale has a multitude of possible applications and
extensions. For example, by having an absolute scale we address inflationary trends, ”region-locked” ratings,
detect cheaters more systematically, etc.

This metric seems to have great potential for auxiliary purposes, but has also some drawbacks: we
can’t satisfyingly use this in a real tournament, 12 since this scale takes a reasonable amount of data/time to
converge and stabilise (doesn’t produce instantaneous output such as win/loss).

Like I pointed before, there are really a LOT of extension tools that can be created from an absolute
scale, that I look forward to explore in further work!
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